

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME			
	CENTRE NUMBER		CANDIDATE NUMBER	
*	CHEMISTRY			5070/32
	Paper 3 Practical Test		May/June 2011	
	-			1 hour 30 minutes
	Candidates answer on the Question Paper			
	Additional Mate	ials: As listed in the Confidential Instruction	IS	
n				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black ink.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Qualitative Analysis Notes are printed on page 8.

You should show the essential steps in any calculations and record experimental results in the spaces provided on the question paper.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
Total		

This document consists of 6 printed pages and 2 blank pages.

1 Seaweed can be used as a commercial source of iodine. The amount of iodine present in a sample of seaweed is often stated in parts per million, ppm. For instance, if a sample contains 200 ppm, then there are 200 g of iodine in every 1 000 000 g of seaweed.

For Examiner's Use

You are provided with an aqueous solution of iodine which has been obtained from seaweed. You are required to determine its concentration by titration with sodium thiosulfate, $Na_2S_2O_3$, using starch as an indicator and then calculate how much iodine is present in the seaweed.

 $2\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3 \ + \ \mathrm{I}_2 \ \longrightarrow \ \mathrm{Na}_2\mathrm{S}_4\mathrm{O}_6 \ + \ 2\mathrm{NaI}$

P is the aqueous solution of iodine. **Q** is 0.100 mol/dm³ sodium thiosulfate.

(a) Put Q into the burette.

Pipette a 25.0 cm³ (or 20.0 cm³) portion of **P** into a flask.

Add **Q** from the burette until the red-brown colour fades to pale yellow, **then** add a few drops of the starch indicator. This will give a dark blue solution. Continue adding **Q** slowly from the burette until one drop of **Q** causes the blue colour to disappear, leaving a colourless solution.

Record your results in the table, repeating the titration as many times as you consider necessary to achieve consistent results.

Results

Burette readings

titration number	1	2	
final reading / cm ³			
initial reading / cm ³			
volume of Q used / cm ³			
best titration results (\checkmark)			

Summary

Tick (\checkmark) the best titration results.

Using these results, the average volume of \mathbf{Q} required was cm³.

Volume of solution **P** used was cm³.

[12]

https://xtremepape.rs/

(b)	\mathbf{Q} is 0.100 mol/dm ³ sodium thiosulfate.		For
	Using your results from (a), calculate the concentration, in mol/dm ³ , of iodine	in P .	Examiner's Use
	concentration of iodine in P mol/dm ³	[2]	
(c)	Using your answer from (b) , calculate the mass, in g, of iodine in 1 dm ³ of P . [The relative atomic mass of iodine is 127.]		
	mass of iodine in 1 dm ³ of P g	[1]	
(d)	If all the iodine present in 1 dm^3 of P was obtained from 15000g of seaweed, the amount, in ppm, of iodine present in the seaweed.	, calculate	
	amount of iodine present in the seaweed ppm	[1]	
		[Total: 16]	

2 Carry out the following experiments on the aqueous solutions **R** and **S** and record your observations in the table. You should test and name any gas evolved.

For Examiner's Use

test no.	test	observations
1	To 2 cm depth of R in a test-tube, add a small amount of solid calcium carbonate.	
2	 (a) To 1 cm depth of R in a test-tube, add a few drops of aqueous silver nitrate. (b) To the mixture from (a), add aqueous ammonia until no further change occurs. 	
3	 (a) To 2 cm depth of R in a test-tube, add a piece of magnesium ribbon. (b) To the mixture from (a), when the reaction has finished, add S until no further change occurs. 	

test no.	test	observations	
4	To 2 cm depth of aqueous zinc sulfate in a test-tube, add S until no further change occurs.		
5	 (a) To 2 cm depth of aqueous chromium(III) chloride in a test-tube, add S until no further change occurs. (b) To the mixture from (a), add R until no further change occurs. 		
6	To 2 cm depth of S in a test-tube, add a small amount of solid ammonium chloride. Warm the mixture gently.		
Concl	[2 Camaluations		
Conclusions			

Identify both the cation and anion in **R**.

The cation in **R** is and the anion in **R** is

Identify the anion in S.

The anion in **S** is

https://xtremepape.rs/

[3]

BLANK PAGE

6

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

QUALITATIVE ANALYSIS NOTES

Tests for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l⁻</i>) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then add aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (Al ³⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	_
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt., or very slight white ppt.
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Tests for gases

gas	test and test result
ammonia (NH ₃)	turns damp litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint
sulfur dioxide (SO ₂)	turns acidified aqueous potassium dichromate(VI) from orange to green